Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ken Loo
Дата выпуска 2000-12-22
dc.description We will derive a rigorous real-time propagator for the non-relativistic quantum mechanical L<sup>2</sup> transition probability amplitude and for the non-relativistic wavefunction. The propagator will be given explicitly in terms of the time evolution operator. The derivation will be for all self-adjoint non-vector potential Hamiltonians. For systems with potentials that carry at most a finite number of singularity and discontinuities, we will show that our propagator can be written in the form of a rigorous real-time, time-sliced Feynman path integral via improper Riemann integrals. We will also derive the Feynman path integral in a non-standard analysis formulation. Finally, we will compute the propagator for the harmonic oscillator using the non-standard analysis Feynman path-integral formulation; we will compute the propagator without using any knowledge of the classical properties of the harmonic oscillator.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A rigorous real-time Feynman path integral and propagator
Тип paper
DOI 10.1088/0305-4470/33/50/307
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 9215
Последняя страница 9239
Аффилиация Ken Loo; PO Box 9160, Portland, OR 97207, USA
Выпуск 50

Скрыть метаданые