| Автор | Ken Loo |
| Дата выпуска | 2000-12-22 |
| dc.description | We will derive a rigorous real-time propagator for the non-relativistic quantum mechanical L<sup>2</sup> transition probability amplitude and for the non-relativistic wavefunction. The propagator will be given explicitly in terms of the time evolution operator. The derivation will be for all self-adjoint non-vector potential Hamiltonians. For systems with potentials that carry at most a finite number of singularity and discontinuities, we will show that our propagator can be written in the form of a rigorous real-time, time-sliced Feynman path integral via improper Riemann integrals. We will also derive the Feynman path integral in a non-standard analysis formulation. Finally, we will compute the propagator for the harmonic oscillator using the non-standard analysis Feynman path-integral formulation; we will compute the propagator without using any knowledge of the classical properties of the harmonic oscillator. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | A rigorous real-time Feynman path integral and propagator |
| Тип | paper |
| DOI | 10.1088/0305-4470/33/50/307 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 33 |
| Первая страница | 9215 |
| Последняя страница | 9239 |
| Аффилиация | Ken Loo; PO Box 9160, Portland, OR 97207, USA |
| Выпуск | 50 |