Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Dharma P Gupta
Автор Martin E Muldoon
Дата выпуска 2000-02-25
dc.description Kishore (1963 Proc. Am. Math. Soc. 14 527) considered the Rayleigh functions <sub>n</sub> ( ) = <sub>k = 1</sub> <sup> </sup> j <sub> k </sub> <sup>-2n </sup> ,n = 1,2, ... , where ±j <sub> k </sub> are the (non-zero) zeros of the Bessel function J (z ) and provided a convolution-type sum formula for finding <sub>n</sub> in terms of <sub>1</sub> , ... , <sub>n -1</sub> . His main tool was the recurrence relation for Bessel functions. Here we extend this result to a larger class of functions by using Riccati differential equations. We get new results for the zeros of certain combinations of Bessel functions and their first and second derivatives as well as recovering some results of Buchholz for zeros of confluent hypergeometric functions.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Riccati equations and convolution formulae for functions of Rayleigh type
Тип paper
DOI 10.1088/0305-4470/33/7/306
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 1363
Последняя страница 1368
Аффилиация Dharma P Gupta; Department of Mathematics and Statistics, York University, Toronto, ON, Canada M3J 1P3
Аффилиация Martin E Muldoon; Department of Mathematics and Statistics, York University, Toronto, ON, Canada M3J 1P3
Выпуск 7

Скрыть метаданые