Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Stefan Giller
Дата выпуска 2000-03-03
dc.description Borel summable semiclassical expansions in 1D quantum mechanics are considered. These are the Borel summable expansions of fundamental solutions and of quantities constructed with their help. An expansion, called topological, is constructed for the corresponding Borel functions. This allows us to study the Borel plane singularity structure in a systematic way. Examples of such structures are considered for linear, harmonic and anharmonic potentials. Together with the best approximation provided by the semiclassical series the exponentially small contributions completing the approximation are considered. A natural method of constructing such exponential asymptotics based on the Borel plane singularity structures provided by the topological expansion is developed. The method is used to form the semiclassical series including exponential contributions for the energy levels of the anharmonic oscillator.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Topological expansion and exponential asymptotics in 1D quantum mechanics
Тип paper
DOI 10.1088/0305-4470/33/8/304
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 1543
Последняя страница 1580
Аффилиация Stefan Giller; Theoretical Physics Department II, University of Lódz, Pomorska 149/153, 90-236 Lódz, Poland
Выпуск 8

Скрыть метаданые