Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Anthony J Guttmann
Автор Iwan Jensen
Автор Ling Heng Wong
Автор Ian G Enting
Дата выпуска 2000-03-10
dc.description We use the finite lattice method to count the number of punctured staircase and self-avoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent increase is proved to be 1.0 per puncture for polyominoes.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Punctured polygons and polyominoes on the square lattice
Тип paper
DOI 10.1088/0305-4470/33/9/303
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 33
Первая страница 1735
Последняя страница 1764
Выпуск 9

Скрыть метаданые