Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Y K Wang
Автор F Y Wu
Дата выпуска 1976-04-01
dc.description A general spin model on the Cayley tree lattice, which includes both the q component Potts (1952) and the Ashkin-Teller (1943) models, is considered. The free energy in zero field is evaluated in a closed form and found to be analytic in temperature. The model exhibits no long-range order in the sense that the probability of finding two sites far away to be in spin states alpha and beta is constant, independent of alpha and beta . The susceptibility per site, chi <sub>R</sub>, for a region R in the centre of the lattice, defined to be the summation of the site-site correlations between R and the whole lattice L. For the linear size of R to be any finite fraction of that of L, chi <sub>R</sub> diverges at the Bethe-Peierls temperature(s) T<sub>BP</sub>, while for R identical to L, chi <sub>R</sub> diverges at temperature(s) different from T<sub>BP</sub>.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Multi-component spin model on a Cayley tree
Тип paper
DOI 10.1088/0305-4470/9/4/016
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 9
Первая страница 593
Последняя страница 604
Аффилиация Y K Wang; Dept. of Phys., Northeastern Univ., Boston, MA, USA
Аффилиация F Y Wu; Dept. of Phys., Northeastern Univ., Boston, MA, USA
Выпуск 4

Скрыть метаданые