| Автор | D S Gaunt |
| Автор | M F Sykes |
| Дата выпуска | 1976-07-01 |
| dc.description | For pt.IV see ibid., vol.9, p.725 (1976). By introducing a notional field variable lambda into the percolation problem, a function P<sub>c</sub>( lambda ) is defined whose Ising analogue is the magnetic field variation of the magnetization along the critical isotherm. Series expansions are used to study the critical behaviour of P<sub>c</sub>( lambda ) characterized by an exponent delta <sub>p</sub>, for both site and bond percolation problems on the more common two-dimensional lattices. The authors conclude that delta <sub>p</sub> is a dimensional invariant and estimate delta <sub>p</sub>=18.0+or-0.75. It appears that delta <sub>p</sub>=18, lambda <sub>p</sub>=2<sup>3</sup>/<sub>7</sub>, beta <sub>p</sub>=<sup>1</sup>/<sub>7</sub> is the simplest set of rational exponents which is most consistent with the available data and which satisfies the scaling law gamma <sub>p</sub>= beta <sub>p</sub>( delta <sub>p</sub>-1) exactly. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Percolation processes in two dimensions. V. The exponent δ<sub>p</sub> and scaling theory |
| Тип | paper |
| DOI | 10.1088/0305-4470/9/7/014 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 9 |
| Первая страница | 1109 |
| Последняя страница | 1116 |
| Аффилиация | D S Gaunt; Wheatstone Phys. Lab., King's Coll., London, UK |
| Аффилиация | M F Sykes; Wheatstone Phys. Lab., King's Coll., London, UK |
| Выпуск | 7 |