Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор V L B de Jesus
Автор A P Guimarães
Автор I S Oliveira
Дата выпуска 1998-06-14
dc.description The classical motion of a charged particle in oscillating magnetic and electric fields is investigated. Introducing a rotating coordinate system frame greatly simplifies the equations of motion and allows a formal analogy with the problem of three coupled oscillators with anisotropic damping. The solutions are calculated analytically. It is shown that when the resonance condition is achieved, that is, the frequency of the oscillating field equals the cyclotron frequency of the particle , the particle is confined to a region of space of volume given approximately by , where is the modulus of the initial velocity of the particle. is the frequency of the particle about , the magnitude of the oscillating field. The orbit of the particle is shown to be a closed curve in the rotating frame, or a closed surface in the laboratory system. Off resonance, the particle drifts away. We simulate the motion of particles with charge-to-mass ratios differing by about 1%, and show that they can be resonantly separated. The results suggest a resonant method for charged particle confinement and isotope separation.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Normal modes and resonant confinement of charged particles in oscillating electric and magnetic fields
Тип paper
DOI 10.1088/0953-4075/31/11/009
Electronic ISSN 1361-6455
Print ISSN 0953-4075
Журнал Journal of Physics B: Atomic, Molecular and Optical Physics
Том 31
Первая страница 2457
Последняя страница 2467
Аффилиация V L B de Jesus; Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro-22290-180, Brazil
Аффилиация A P Guimarães; Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro-22290-180, Brazil
Аффилиация I S Oliveira; Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro-22290-180, Brazil
Выпуск 11

Скрыть метаданые