Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Markus Reiher
Автор Juergen Hinze
Дата выпуска 1999-12-14
dc.description The self-consistent treatment of the Breit interaction in fully numerical atomic structure calculations is cumbersome due to the computationally demanding evaluation of two-electron integrals as they occur in the original formulation (Grant I P and Pyper N C 1976 J. Phys. B: At. Mol. Phys. 9 761). We present a reformulation of the frequency-independent Breit interaction operator in spherical coordinates and derive the corresponding matrix elements over spinors. With this formulation it becomes possible to compute the matrix elements of the Breit interaction efficiently and analogously to those of the Coulomb interaction: i.e., by determining the corresponding interaction potential functions using Poisson equations. The derived formulae will equally simplify computations using either basis sets or a numerical representation of the orbitals such that the Breit interaction can be included effectively in CI and SCF calculations for atoms and molecules. Of course, the computation of the Breit contribution to the total electronic energy as a first-order perturbation correction is also simplified. Furthermore, the frequency-dependent Breit interaction could be treated analogously.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Self-consistent treatment of the frequency-independent Breit interaction in Dirac-Fock and MCSCF calculations of atomic structures: I. Theoretical considerations
Тип paper
DOI 10.1088/0953-4075/32/23/306
Electronic ISSN 1361-6455
Print ISSN 0953-4075
Журнал Journal of Physics B: Atomic, Molecular and Optical Physics
Том 32
Первая страница 5489
Последняя страница 5505
Аффилиация Markus Reiher; Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany
Аффилиация Juergen Hinze; Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany
Выпуск 23

Скрыть метаданые