Автор |
Lou Sen-yue |
Дата выпуска |
1997-08-01 |
dc.description |
A (2 + 1)-dimensional multi-component derivative nonlinear Schrödinger (DNLS) equation is obtained from the symmetry constraint of the modified Kadomtsev-Petviashvili equation. The model is proved to be integrable under the meaning that it possesses the Painlevé property and the infinitely many generalized symmetries which constitute a generalized W<sub>∞</sub> algebra. An integrable DNLS hierarchy is obtained from the flow equation of infinitely many symmetries of the DNLS equation. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
(2 + 1)-Dimensional derivative nonlinear Schrödinger equation |
Тип |
paper |
DOI |
10.1088/1004-423X/6/8/001 |
Print ISSN |
1004-423X |
Журнал |
Acta Physica Sinica (Overseas Edition) |
Том |
6 |
Первая страница |
561 |
Последняя страница |
573 |
Аффилиация |
Lou Sen-yue; Institute of Modern Physics, Academia Sinica, Beijing 100080; Ningbo Normal College, Ningbo 315211, China |
Выпуск |
8 |