Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lou Sen-yue
Дата выпуска 1997-08-01
dc.description A (2 + 1)-dimensional multi-component derivative nonlinear Schrödinger (DNLS) equation is obtained from the symmetry constraint of the modified Kadomtsev-Petviashvili equation. The model is proved to be integrable under the meaning that it possesses the Painlevé property and the infinitely many generalized symmetries which constitute a generalized W<sub>∞</sub> algebra. An integrable DNLS hierarchy is obtained from the flow equation of infinitely many symmetries of the DNLS equation.
Формат application.pdf
Издатель Institute of Physics Publishing
Название (2 + 1)-Dimensional derivative nonlinear Schrödinger equation
Тип paper
DOI 10.1088/1004-423X/6/8/001
Print ISSN 1004-423X
Журнал Acta Physica Sinica (Overseas Edition)
Том 6
Первая страница 561
Последняя страница 573
Аффилиация Lou Sen-yue; Institute of Modern Physics, Academia Sinica, Beijing 100080; Ningbo Normal College, Ningbo 315211, China
Выпуск 8

Скрыть метаданые