Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Massimo Bianchi
Автор Stefano Kovacs
Автор Giancarlo Rossi
Автор Yassen S. Stanev
Дата выпуска 1999-08-01
dc.description We show that the logarithmic behaviour seen in perturbative and non perturbative contributions to Green functions of gauge-invariant composite operators in N = 4 SYM with SU(N) gauge group can be consistently interpreted in terms of anomalous dimensions of unprotected operators in long multiplets of the superconformal group SU(2,2|4). In order to illustrate the point we analyse the short-distance behaviour of a particularly simple four-point Green function of the lowest scalar components of the N = 4 supercurrent multiplet. Assuming the validity of the Operator Product Expansion, we are able to reproduce the known value of the one-loop anomalous dimension of the single-trace operators in the Konishi supermultiplet. We also show that it does not receive any non-perturbative contribution from the one-instanton sector. We briefly comment on double- and multi-trace operators and on the bearing of our results on the AdS/SCFT correspondence.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the logarithmic behaviour in N = 4 SYM theory
Тип paper
DOI 10.1088/1126-6708/1999/08/020
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 1999
Первая страница 20
Последняя страница 020
Выпуск 08

Скрыть метаданые