Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Suresh Govindarajan
Автор T. Jayaraman
Дата выпуска 2000-07-01
dc.description We consider Landau-Ginzburg (LG) models with boundary conditions preserving A-type N = 2 supersymmetry. We show the equivalence of a linear class of boundary conditions in the LG model to a particular class of boundary states in the corresponding CFT by an explicit computation of the open-string Witten index in the LG model. We extend the linear class of boundary conditions to general non-linear boundary conditions and determine their consistency with A-type N = 2 supersymmetry. This enables us to provide a microscopic description of special lagrangian submanifolds in <sup>n</sup> due to Harvey and Lawson. We generalise this construction to the case of hypersurfaces in <sup>n</sup>. We find that the boundary conditions must necessarily have vanishing Poisson bracket with the combination (W(φ)−W̅()), where W(φ) is the appropriate superpotential for the hypersurface. An interesting application considered is the <sup>3</sup> supersymmetric cycle of the quintic in the large complex structure limit.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the Landau-Ginzburg description of boundary CFTs and special lagrangian submanifolds
Тип paper
DOI 10.1088/1126-6708/2000/07/016
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 2000
Первая страница 16
Последняя страница 016
Выпуск 07

Скрыть метаданые