Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bayram Tekin
Дата выпуска 2000-08-01
dc.description It is known that self-duality equations for multi-instantons on a line in four dimensions are equivalent to minimal surface equations in three-dimensional Minkowski space. We extend this equivalence beyond the equations of motion and show that topological number, instanton moduli space and anti-self-dual solutions have representations in terms of minimal surfaces. The issue of topological charge is quite subtle because the surfaces that appear are non compact. This minimal surface/instanton correspondence allows us to define a metric on the configuration space of the gauge fields. We obtain the minimal surface representation of an instanton with arbitrary charge. The trivial vacuum and the BPST instanton as minimal surfaces are worked out in detail. BPS monopoles and the geodesics are also discussed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Multi-instantons in <sup>4</sup> and Minimal Surfaces in <sup>2,1</sup>
Тип paper
DOI 10.1088/1126-6708/2000/08/049
Electronic ISSN 1029- 8479
Print ISSN 1126-6708
Журнал Journal of High Energy Physics
Том 2000
Первая страница 49
Последняя страница 049
Выпуск 08

Скрыть метаданые