Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Peter Goetsch
Автор Robert Graham
Автор Fritz Haake
Дата выпуска 1996-02-01
dc.description We present a microscopic derivation of a stochastic Schrödinger equation for an oscillator valid at finite temperatures. Damping and noise arise from interaction with a heat bath. Vacuum and thermal noise drive the wavevector in rather different ways which we illuminate by treating the fate of an initial Schrödinger cat state. While the decoherence of the two macroscopically distinct components of such a state is thermally enhanced, the rise of a classically interpretable signal indicating `life' or `death' is not. Suitable averages over the noises could be obtained from a well known master equation and demand interpretation in terms of ensembles, but results contingent on single realizations of the noises may be related to single runs of experiments.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Microscopic foundation of a finite-temperature stochastic Schrödinger equation
Тип paper
DOI 10.1088/1355-5111/8/1/012
Electronic ISSN 1361-6625
Print ISSN 1355-5111
Журнал Quantum and Semiclassical Optics: Journal of the European Optical Society Part B
Том 8
Первая страница 157
Последняя страница 166
Аффилиация Peter Goetsch; Fachbereich Physik, Universität-Gesamthochschule Essen, 45117 Essen, Germany
Аффилиация Robert Graham; Fachbereich Physik, Universität-Gesamthochschule Essen, 45117 Essen, Germany
Аффилиация Fritz Haake; Fachbereich Physik, Universität-Gesamthochschule Essen, 45117 Essen, Germany
Выпуск 1

Скрыть метаданые