Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Martin Holthaus
Дата выпуска 2000-10-01
dc.description We study the dynamics of ultracold atoms in an optical lattice under constant bias. After recapitulating the ideas underlying Bloch oscillations and Zener's formula for interband transitions, the Bloch-Zener scenario is tested by means of accurate numerical solutions to the time-dependent Schrödinger equation. It is shown how two shortcomings of the traditional Zener formula can be removed: the common weak-binding approximation can be circumvented by combining Kohn's insight into the structure of complex energy bands with the Dykhne-Davis-Pechukas description of transitions in terms of adiabatic excursions on analytically continued eigenvalue surfaces, and a usually neglected Stokes phenomenon comes into play when accounting for the finite width of the Brillouin zone. Treating Bose-Einstein condensates in optical lattices within the standard mean-field approximation at zero temperature, the ideal Bloch-Zener scenario turns out to be remarkably stable against the condensate's nonlinear self-interaction. Yet, under appropriate conditions a Bloch-oscillating Gross-Pitaevskii wavepacket reveals characteristic signatures of that nonlinearity, such as sudden phase jumps, slight shifts of the oscillation frequency or non-classical breathing modes. It is suggested that such experimentally detectable signatures will play an important role in future high-precision experiments aiming at the exploration of many-body dynamics in periodic potentials with condensates in optical lattices.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Bloch oscillations and Zener breakdown in an optical lattice
Тип paper
DOI 10.1088/1464-4266/2/5/306
Electronic ISSN 1741-3575
Print ISSN 1464-4266
Журнал Journal of Optics B: Quantum and Semiclassical Optics
Том 2
Первая страница 589
Последняя страница 604
Аффилиация Martin Holthaus; Ludwig-Maximilians-Universität, Sektion Physik, Theresienstraße 37, D-80333 München, Germany
Выпуск 5

Скрыть метаданые