Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор K Rinzema
Автор B J Hoenders
Автор H A Ferwerda
Автор J J Ten Bosch
Дата выпуска 1993-09-01
dc.description In an attempt to construct an analytic theory of anisotropic random flight, the need has arisen to construct phase-functions for which the expansion in spherical harmonics has only a limited number of terms, but which have a high value for the asymmetry parameter g. The authors describe the procedure to find the phase-function which has a maximum value of g for given N, where N is the number of spherical components of the phase-function. It appears that in order to attain g = 0.9, one needs a phase-function composed of at least nine spherical components, or equivalently a polynomial of degree nine.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Low-degree polynomial phase-functions with high g-value (light propagation in biological tissues)
Тип paper
DOI 10.1088/0031-9155/38/9/013
Electronic ISSN 1361-6560
Print ISSN 0031-9155
Журнал Physics in Medicine and Biology
Том 38
Первая страница 1343
Последняя страница 1350
Аффилиация K Rinzema; Lab. for Mater. Tech., State Univ. of Groningen, Netherlands
Аффилиация B J Hoenders; Lab. for Mater. Tech., State Univ. of Groningen, Netherlands
Аффилиация H A Ferwerda; Lab. for Mater. Tech., State Univ. of Groningen, Netherlands
Аффилиация J J Ten Bosch; Lab. for Mater. Tech., State Univ. of Groningen, Netherlands
Выпуск 9

Скрыть метаданые