Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор A V Germanenko
Автор G M Minkov
Автор E L Rumyantsev
Автор O E Rut
Дата выпуска 1993-03-01
dc.description The exact solution at zero boundary condition of the problem of the carrier in a spatially confined gapless semiconductor in a magnetic field parallel to the surface is presented. It is shown that, because the energy spectrum of a gapless semiconductor is formed by a strong relativistic spin-orbit interaction, the space confinement leads to the effective attraction of the electron to the surface, which is different for different spin states. As a result, the energy of Landau levels in the case of one-side confinement of a semiconductor can even diminish when the oscillator centre is shifted towards the surface. The manifestation of the considered effect in tunnelling experiments is discussed. By solving the same problem in a gapless semiconductor film it is shown that the most striking effect, which has the same origin, is the confluence of the lowest electronic levels a<sub>1</sub> and b<sub>1</sub> and inversion of the sign of the g-factor for states with n>1 as the ratio of film width to the magnetic length is reduced. The possibility of the experimental testing of this phenomenon is discussed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Energy spectrum of a gapless semiconductor in a longitudinal magnetic field under spatial confinement
Тип paper
DOI 10.1088/0268-1242/8/3/014
Electronic ISSN 1361-6641
Print ISSN 0268-1242
Журнал Semiconductor Science and Technology
Том 8
Первая страница 388
Последняя страница 393
Аффилиация A V Germanenko; Inst. of Phys. & Appl. Math., Ural State Univ., Ekaterinburg, Russia
Аффилиация G M Minkov; Inst. of Phys. & Appl. Math., Ural State Univ., Ekaterinburg, Russia
Аффилиация E L Rumyantsev; Inst. of Phys. & Appl. Math., Ural State Univ., Ekaterinburg, Russia
Аффилиация O E Rut; Inst. of Phys. & Appl. Math., Ural State Univ., Ekaterinburg, Russia
Выпуск 3

Скрыть метаданые