Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mark S Alber
Автор Gregory G Luther
Автор Jerrold E Marsden
Дата выпуска 1997-01-01
dc.description We use so-called energy-dependent Schrödinger operators to establish a link between special classes of solutions of N-component systems of evolution equations and finite dimensional Hamiltonian systems on the moduli spaces of Riemann surfaces. We also investigate the phase-space geometry of these Hamiltonian systems and introduce deformations of the level sets associated to conserved quantities, which results in a new class of solutions with monodromy for N-component systems of PDEs. After constructing a variety of mechanical systems related to the spatial flows of nonlinear evolution equations, we investigate their semiclassical limits. In particular, we obtain semiclassical asymptotics for the Bloch eigenfunctions of the energy dependent Schrödinger operators, which is of importance in investigating zero-dispersion limits of N-component systems of PDEs.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Energy dependent Schrödinger operators and complex Hamiltonian systems on Riemann surfaces
Тип paper
DOI 10.1088/0951-7715/10/1/015
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 10
Первая страница 223
Последняя страница 241
Выпуск 1

Скрыть метаданые