Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор James P Dunyak
Дата выпуска 1997-03-01
dc.description A reaction - diffusion equation is studied with linear dynamics in the medium and a nonlinear boundary condition. The diffusion occurs in a domain that is perforated by periodically placed holes. On the boundary of these holes, the nonlinear boundary condition is applied. Wavefront propagation is established by use of a Feynman - Kac representation of the solution and development of an appropriate large deviations principle. The location of the wavefront is described in terms of the Legendre transform of the solution to an eigenvalue problem. The proof uses periodicity in an essential way by application of Doeblin's condition to the associated random process on the torus.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Reaction - diffusion equations in perforated media
Тип paper
DOI 10.1088/0951-7715/10/2/004
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 10
Первая страница 377
Последняя страница 388
Аффилиация James P Dunyak; Department of Mathematics, Texas Technical University, Lubbock, TX 79409, USA
Выпуск 2

Скрыть метаданые