Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор James Montaldi
Дата выпуска 1997-03-01
dc.description We consider relative equilibria in symmetric Hamiltonian systems, and their persistence or bifurcation as the momentum is varied. In particular, we extend a classical result about persistence of relative equilibria from values of the momentum map that are regular for the coadjoint action, to arbitrary values, provided that either (i) the relative equilibrium is at a local extremum of the reduced Hamiltonian or (ii) the action on the phase space is (locally) free. The first case uses just point-set topology, while in the second we rely on the local normal form for (free) symplectic group actions, and then apply the splitting lemma. We also consider the Lyapunov stability of extremal relative equilibria. The group of symmetries is assumed to be compact.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Persistence and stability of relative equilibria
Тип paper
DOI 10.1088/0951-7715/10/2/009
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 10
Первая страница 449
Последняя страница 466
Аффилиация James Montaldi; Institut Non-Linéaire de Nice, 1361 route des Lucioles, 06560 Valbonne, France
Выпуск 2

Скрыть метаданые