Автор |
Víctor Guíñez |
Дата выпуска |
1997-05-01 |
dc.description |
Every positive -quadratic differential form defined on an oriented surface has two transversal -one-dimensional foliations with common singularities associated with it. In this article we begin the description of the simplest patterns of topological change - bifurcation - in one-parameter families of positive -quadratic differential forms , depending smoothly on a real parameter t, which occur at values where has a non-locally stable singular point. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Rank two codimension 1 singularities of positive quadratic differential forms |
Тип |
paper |
DOI |
10.1088/0951-7715/10/3/004 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
10 |
Первая страница |
631 |
Последняя страница |
654 |
Аффилиация |
Víctor Guíñez; Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile |
Выпуск |
3 |