Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Rodica D Costin
Дата выпуска 1997-07-01
dc.description We study the integrability properties of nonlinearly perturbed Euler equations (linear ordinary differential equations with one regular singular point in the complex plane plus a nonlinear perturbation) near the singular point. We allow for first integrals with essential singularities and give sufficient conditions for the nonintegrability of the equations in the complex domain. We extend normal form theorems for singular equations and argue that equivalence to normal forms captures the spirit of the poly-Painlevé test and is a powerful tool for a rigorous approach to nonintegrability.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Integrability properties of nonlinearly perturbed Euler equations
Тип paper
DOI 10.1088/0951-7715/10/4/006
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 10
Первая страница 905
Последняя страница 924
Аффилиация Rodica D Costin; Mathematics Department, Hill Center, Busch Campus, Rutgers University, Piscataway, NJ 08854, USA
Выпуск 4

Скрыть метаданые