Автор |
Rodica D Costin |
Дата выпуска |
1997-07-01 |
dc.description |
We study the integrability properties of nonlinearly perturbed Euler equations (linear ordinary differential equations with one regular singular point in the complex plane plus a nonlinear perturbation) near the singular point. We allow for first integrals with essential singularities and give sufficient conditions for the nonintegrability of the equations in the complex domain. We extend normal form theorems for singular equations and argue that equivalence to normal forms captures the spirit of the poly-Painlevé test and is a powerful tool for a rigorous approach to nonintegrability. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Integrability properties of nonlinearly perturbed Euler equations |
Тип |
paper |
DOI |
10.1088/0951-7715/10/4/006 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
10 |
Первая страница |
905 |
Последняя страница |
924 |
Аффилиация |
Rodica D Costin; Mathematics Department, Hill Center, Busch Campus, Rutgers University, Piscataway, NJ 08854, USA |
Выпуск |
4 |