Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Carlos Martel
Автор José M Vega
Дата выпуска 1998-01-01
dc.description A real hyperbolic system is considered that applies near the onset of the oscillatory instability in large spatial domains. The validity of that system requires that some intermediate scales (large compared with the basic wavelength of the unstable modes but small compared with the size of the system) remain inhibited; that condition is analysed in some detail. The dynamics associated with the hyperbolic system is fully analysed to conclude that it is very simple if the coefficient of the cross-nonlinearity is such that , while the system exhibits increasing complexity (including period-doubling sequences, quasiperiodic transitions, crises) as the bifurcation parameter grows if ; if then the system behaves subcritically. Our results are seen to compare well, both qualitatively and quantitatively, with the experimentally obtained ones for the oscillatory instability of straight rolls in pure Rayleigh - Bénard convection.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Dynamics of a hyperbolic system that applies at the onset of the oscillatory instability
Тип paper
DOI 10.1088/0951-7715/11/1/008
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 11
Первая страница 105
Последняя страница 142
Аффилиация Carlos Martel; ETSI Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3 28040 Madrid, Spain
Аффилиация José M Vega; ETSI Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3 28040 Madrid, Spain
Выпуск 1

Скрыть метаданые