Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ana Paula S Dias
Дата выпуска 1998-03-01
dc.description Systems of ordinary differential equations modelling coupled cells with `wreath product' coupling have been the subject of recent research. For identical cells, such systems can have interesting symmetries. The basic existence theorem for Hopf bifurcation in the symmetric case is the equivariant Hopf theorem, which involves isotropy subgroups with a two-dimensional fixed-point subspace (called -axial). A classification theorem for -axial subgroups in wreath products has been presented by Dionne et al. However, their classification is incomplete: it omits some -axial subgroups in some cases. We provide a complete classification of the -axial subgroups in wreath products. We also classify the maximal isotropy subgroups for these groups.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Hopf bifurcation for wreath products
Тип paper
DOI 10.1088/0951-7715/11/2/004
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 11
Первая страница 247
Последняя страница 264
Аффилиация Ana Paula S Dias; Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
Выпуск 2

Скрыть метаданые