Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Arkady Pikovsky
Автор Antonio Politi
Дата выпуска 1998-07-01
dc.description We study the dynamics of Lyapunov vectors in various models of one-dimensional distributed systems with spacetime chaos. We demonstrate that the vector corresponding to the maximum exponent is always localized and the localization region wanders irregularly. This localization is explained by interpreting the logarithm of the Lyapunov vector as a roughening interface. We show that for many systems, the `interface' belongs to the Kardar-Parisi-Zhang universality class. Accordingly, we discuss the scaling behaviour of finite-size effects and self-averaging properties of the Lyapunov exponents.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Dynamic localization of Lyapunov vectors in spacetime chaos
Тип paper
DOI 10.1088/0951-7715/11/4/016
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 11
Первая страница 1049
Последняя страница 1062
Выпуск 4

Скрыть метаданые