Автор |
Astrid Franz |
Дата выпуска |
1998-07-01 |
dc.description |
Upper bounds for the Hausdorff dimension of compact and invariant sets of diffeomorphisms are given using a singular value function of the tangent map and the topological entropy under the assumption, that there exists an equivariant splitting of the tangent bundle. This improves previous results for compact uniformly hyperbolic sets of diffeomorphisms satisfying an additional pinching condition. Furthermore, it is shown that the results can be extended to a special class of noninjective maps. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Hausdorff dimension estimates for invariant sets with an equivariant tangent bundle splitting |
Тип |
paper |
DOI |
10.1088/0951-7715/11/4/017 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
11 |
Первая страница |
1063 |
Последняя страница |
1074 |
Аффилиация |
Astrid Franz; Department of Mathematics, University of Technology Dresden, Mommsenstrasse 13, 01062 Dresden, Germany |
Выпуск |
4 |