Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ovidiu Costin
Автор Rodica D Costin
Дата выпуска 1998-09-01
dc.description We show that there exists a rational change of coordinates of Painlevé's P1 equation and of the elliptic equation after which these two equations become analytically equivalent in a region in the complex phase space where y and are unbounded. The region of equivalence comprises all singularities of solutions of P1 (i.e. outside the region of equivalence, solutions are analytic). The Painlevé property of P1 (that the only movable singularities are poles) follows as a corollary. Conversely, we argue that the Painlevé property is crucial in reducing P1, in a singular regime, to an equation integrable by quadratures.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Singular normal form for the Painlevé equation P1
Тип paper
DOI 10.1088/0951-7715/11/5/002
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 11
Первая страница 1195
Последняя страница 1208
Выпуск 5

Скрыть метаданые