Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ricardo Coutinho
Автор Bastien Fernandez
Дата выпуска 1998-09-01
dc.description We study the time evolution of the interfaces in one-dimensional bistable extended dynamical systems with discrete time. The dynamics are governed by the competition between a local piecewise affine bistable mapping and any couplings given by the convolution with a function of bounded variation. We prove the existence of travelling wave interfaces, namely fronts, and the uniqueness of the corresponding selected velocity and shape. This selected velocity is shown to be the propagating velocity for any interface, to depend continuously on the couplings and to increase with the symmetry parameter of the local nonlinearity. We apply the results to several examples including discrete and continuous couplings, and the dynamics of planar fronts in multidimensional coupled map lattices. We use our technique to study the existence of other kinds of fronts. Finally we consider a more general class of bistable extended mappings for which the couplings are allowed to be nonlinear and the local map to be smooth.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Fronts and interfaces in bistable extended mappings
Тип paper
DOI 10.1088/0951-7715/11/5/014
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 11
Первая страница 1407
Последняя страница 1433
Выпуск 5

Скрыть метаданые