Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gary Froyland
Дата выпуска 1999-01-01
dc.description Using a special form of Ulam's method, we estimate the measure-theoretic entropy of a triple , where M is a smooth manifold, T is a uniformly hyperbolic map, and is the unique physical measure of T. With a few additional calculations, we also obtain numerical estimates of (i) the physical measure , (ii) the Lyapunov exponents of T with respect to , (iii) the rate of decay of correlations for with respect to test functions, and (iv) the rate of escape (for repellors). Four main situations are considered: T is everywhere expanding, T is everywhere hyperbolic (Anosov), T is hyperbolic on an attracting invariant set (axiom A attractor), and T is hyperbolic on a non-attracting invariant set (axiom A non-attractor/repellor).
Формат application.pdf
Издатель Institute of Physics Publishing
Название Using Ulam's method to calculate entropy and other dynamical invariants
Тип paper
DOI 10.1088/0951-7715/12/1/006
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 12
Первая страница 79
Последняя страница 101
Аффилиация Gary Froyland; Department of Mathematical Engineering and Information Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Выпуск 1

Скрыть метаданые