Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор N Papanicolaou
Автор P N Spathis
Дата выпуска 1999-03-01
dc.description We establish the existence of a finite-energy solitary wave in a two-dimensional planar ferromagnet which moves rigidly at any constant velocity v that is smaller than the magnon velocity c. The shape of the calculated soliton depends crucially on the relative magnitude of v and c. For v<<c, the soliton describes a widely separated vortex-antivortex pair undergoing Kelvin motion at a relative distance . There exists a crossover velocity v<sub>0</sub> at which the vortex-antivortex character is lost and the energy-momentum dispersion develops a cusp. For v<sub>0</sub><v<c, the soliton becomes a lump with no apparent topological features and solves the modified KP equation in the limit . We also describe briefly a similar calculation of a vortex ring in a three-dimensional planar ferromagnet. These results together with the analytically known one-dimensional kink provide an interesting set of semitopological solitons whose physical significance is yet to be explored.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Semitopological solitons in planar ferromagnets
Тип paper
DOI 10.1088/0951-7715/12/2/008
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 12
Первая страница 285
Последняя страница 302
Аффилиация N Papanicolaou; Department of Physics, University of Crete, Heraklion, Greece and Research Centre of Crete, Heraklion, Greece
Аффилиация P N Spathis; Department of Physics, University of Crete, Heraklion, Greece and Research Centre of Crete, Heraklion, Greece
Выпуск 2

Скрыть метаданые