Автор |
Marcelo Cerminara |
Автор |
Martin Sambarino |
Дата выпуска |
1999-03-01 |
dc.description |
Let M be a compact metric space and g: M --> M be an homeomorphism C<sup>0</sup>-close to an expansive map of M. In general, it is not true that g is also expansive, but it still has some properties resembling the expansivity. In fact, if we identify pairs of points whose g-orbits stay nearby, both for the future and the past, we obtain an equivalence relation~. The quotient space M / ~ is a compact, metric space and g induces an expansive homeomorphism on that quotient. If M is a surface, we show that for any the connected component of the local stable (unstable) set containing is nontrivial and arc-wise connected. AMS classification scheme numbers: 58F30, 58F15, 54H20, 54F15 |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Stable and unstable sets of C<sup>0</sup> perturbations of expansive homeomorphisms of surfaces |
Тип |
paper |
DOI |
10.1088/0951-7715/12/2/011 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
12 |
Первая страница |
321 |
Последняя страница |
332 |
Аффилиация |
Marcelo Cerminara; MERL, Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay |
Аффилиация |
Martin Sambarino; MERL, Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay |
Выпуск |
2 |