| Автор | Marcelo Cerminara |
| Автор | Martin Sambarino |
| Дата выпуска | 1999-03-01 |
| dc.description | Let M be a compact metric space and g: M --> M be an homeomorphism C<sup>0</sup>-close to an expansive map of M. In general, it is not true that g is also expansive, but it still has some properties resembling the expansivity. In fact, if we identify pairs of points whose g-orbits stay nearby, both for the future and the past, we obtain an equivalence relation~. The quotient space M / ~ is a compact, metric space and g induces an expansive homeomorphism on that quotient. If M is a surface, we show that for any the connected component of the local stable (unstable) set containing is nontrivial and arc-wise connected. AMS classification scheme numbers: 58F30, 58F15, 54H20, 54F15 |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Stable and unstable sets of C<sup>0</sup> perturbations of expansive homeomorphisms of surfaces |
| Тип | paper |
| DOI | 10.1088/0951-7715/12/2/011 |
| Electronic ISSN | 1361-6544 |
| Print ISSN | 0951-7715 |
| Журнал | Nonlinearity |
| Том | 12 |
| Первая страница | 321 |
| Последняя страница | 332 |
| Аффилиация | Marcelo Cerminara; MERL, Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay |
| Аффилиация | Martin Sambarino; MERL, Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay |
| Выпуск | 2 |