Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Yann Brenier
Дата выпуска 1999-05-01
dc.description We consider the Euler equations of an incompressible homogeneous fluid in a thin two-dimensional layer , , with slip boundary conditions at z = 0, and periodic boundary conditions in x. After rescaling the vertical variable and letting go to zero, we get the following hydrostatic limit of the Euler equations    supplemented by slip boundary conditions at z = 0 and z = 1 and periodic boundary conditions in x. We show that the corresponding initial-value problem is locally, but generally not globally, solvable in the class of smooth solutions with strictly convex horizontal velocity profiles, with constant slopes at z = 0 and z = 1.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Homogeneous hydrostatic flows with convex velocity profiles
Тип paper
DOI 10.1088/0951-7715/12/3/004
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 12
Первая страница 495
Последняя страница 512
Аффилиация Yann Brenier; Laboratoire d'Analyse Numérique, Université Paris 6, France
Выпуск 3

Скрыть метаданые