Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Peter Ashwin
Автор Ian Melbourne
Автор Matthew Nicol
Дата выпуска 1999-07-01
dc.description We consider dynamical systems that are equivariant under a noncompact Lie group of symmetries and the drift of relative equilibria in such systems. In particular, we investigate how the drift for a parametrized family of normally hyperbolic relative equilibria can change character at what we call a `drift bifurcation'. To do this, we use results of Arnold to analyse parametrized families of elements in the Lie algebra of the symmetry group. We examine effects in physical space of such drift bifurcations for planar reaction-diffusion systems and note that these effects can explain certain aspects of the transition from rigidly rotating spirals to rigidly propagating `retracting waves'. This is a bifurcation observed in numerical simulations of excitable media where the rotation rate of a family of spirals slows down and gives way to a semi-infinite translating wavefront.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Drift bifurcations of relative equilibria and transitions of spiral waves
Тип paper
DOI 10.1088/0951-7715/12/4/301
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 12
Первая страница 741
Последняя страница 755
Выпуск 4

Скрыть метаданые