Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Pilar R Gordoa
Автор Nalini Joshi
Автор Andrew Pickering
Дата выпуска 1999-07-01
dc.description The truncation method is a collective name for techniques that arise from truncating a Laurent series expansion (with leading term) of generic solutions of nonlinear partial differential equations (PDEs). Despite its utility in finding Bäcklund transformations and other remarkable properties of integrable PDEs, it has not been generally extended to ordinary differential equations (ODEs). Here we give a new general method that provides such an extension and show how to apply it to the classical nonlinear ODEs called the Painlevé equations. Our main new idea is to consider mappings that preserve the locations of a natural subset of the movable poles admitted by the equation. In this way we are able to recover all known fundamental Bäcklund transformations for the equations considered. We are also able to derive Bäcklund transformations onto other ODEs in the Painlevéclassification.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations
Тип paper
DOI 10.1088/0951-7715/12/4/313
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 12
Первая страница 955
Последняя страница 968
Аффилиация Pilar R Gordoa; Department of Pure Mathematics, University of Adelaide, Adelaide, Australia 5005
Аффилиация Nalini Joshi; Department of Pure Mathematics, University of Adelaide, Adelaide, Australia 5005
Аффилиация Andrew Pickering; Department of Pure Mathematics, University of Adelaide, Adelaide, Australia 5005
Выпуск 4

Скрыть метаданые