Автор |
Mathieu Baillif |
Дата выпуска |
1999-11-01 |
dc.description |
We study piecewise monotone and piecewise continuous maps f from a rooted oriented tree to itself, with weight functions either piecewise constant or of bounded variation. We define kneading coordinates for such tree maps. We show that the Milnor-Thurston relation holds between the weighted reduced zeta function and the weighted kneading determinant of f. This generalizes a result known for piecewise monotone interval maps. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Dynamical zeta functions for tree maps |
Тип |
paper |
DOI |
10.1088/0951-7715/12/6/305 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
12 |
Первая страница |
1511 |
Последняя страница |
1529 |
Аффилиация |
Mathieu Baillif; Universitéde Genève, Section de Mathématiques, 2-4 rue du Lièvre, CP 240, CH-1211 Genève 24, Switzerland |
Выпуск |
6 |