Автор | Jean Duchon |
Автор | Raoul Robert |
Дата выпуска | 2000-01-01 |
dc.description | We study the local equation of energy for weak solutions of three-dimensional incompressible Navier-Stokes and Euler equations. We define a dissipation term D (u ) which stems from an eventual lack of smoothness in the solution u . We give in passing a simple proof of Onsager's conjecture on energy conservation for the three-dimensional Euler equation, slightly weakening the assumption of Constantin et al . We suggest calling weak solutions with non-negative D (u ) `dissipative'. |
Формат | application.pdf |
Издатель | Institute of Physics Publishing |
Название | Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations |
Тип | paper |
DOI | 10.1088/0951-7715/13/1/312 |
Electronic ISSN | 1361-6544 |
Print ISSN | 0951-7715 |
Журнал | Nonlinearity |
Том | 13 |
Первая страница | 249 |
Последняя страница | 255 |
Выпуск | 1 |