Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jean Duchon
Автор Raoul Robert
Дата выпуска 2000-01-01
dc.description We study the local equation of energy for weak solutions of three-dimensional incompressible Navier-Stokes and Euler equations. We define a dissipation term D (u ) which stems from an eventual lack of smoothness in the solution u . We give in passing a simple proof of Onsager's conjecture on energy conservation for the three-dimensional Euler equation, slightly weakening the assumption of Constantin et al . We suggest calling weak solutions with non-negative D (u ) `dissipative'.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations
Тип paper
DOI 10.1088/0951-7715/13/1/312
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 249
Последняя страница 255
Выпуск 1

Скрыть метаданые