Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Alessandra Celletti
Автор Antonio Giorgilli
Автор Ugo Locatelli
Дата выпуска 2000-03-01
dc.description The existence of invariant tori in nearly integrable Hamiltonian systems is investigated. We focus our attention on a particular one-dimensional, time-dependent model, known as the forced pendulum . We present a KAM algorithm which allows us to derive explicit estimates on the perturbing parameter ensuring the existence of invariant tori. Moreover, we introduce some technical novelties in the proof of the KAM theorem which allow us to provide results in good agreement with the experimental breakdown threshold. In particular, we have been able to prove the existence of the golden torus with frequency ½((5)<sup>1/2</sup> -1) for values of the perturbing parameter equal to 92% of the numerical threshold, thus significantly improving the previous calculations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Improved estimates on the existence of invariant tori for Hamiltonian systems
Тип paper
DOI 10.1088/0951-7715/13/2/304
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 397
Последняя страница 412
Выпуск 2

Скрыть метаданые