Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Francisco Bernis
Автор Josephus Hulshof
Автор John R King
Дата выпуска 2000-03-01
dc.description We consider non-negative solutions on the half-line of the thin film equation h<sub>t</sub> +(h<sup>n</sup> h<sub>xxx</sub> )<sub>x </sub> = 0, which arises in lubrication models for thin viscous films, spreading droplets and Hele-Shaw cells. We present a discussion of the boundary conditions at x = 0 on the basis of formal and modelling arguments when x = 0 is an edge over which fluid can drain. We apply this discussion to define some similarity solutions of the first and the second kind. Depending on the boundary conditions, we introduce mass-preserving solutions of the first kind (0<n <3), `anomalous dipoles' of the second kind (0<n <2, n 1) and a standard dipole solution of the first kind for n = 1. For solutions of the first kind we prove results on existence, uniqueness and asymptotic behaviour, both at x = 0 and at the free boundary. For solutions of the second kind we briefly present some qualitative properties.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Dipoles and similarity solutions of the thin film equation in the half-line
Тип paper
DOI 10.1088/0951-7715/13/2/305
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 413
Последняя страница 439
Выпуск 2

Скрыть метаданые