Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор John Etnyre
Автор Robert Ghrist
Дата выпуска 2000-03-01
dc.description We draw connections between the field of contact topology (the study of totally non-integrable plane distributions) and the study of Beltrami fields in hydrodynamics on Riemannian manifolds in dimension three. We demonstrate an equivalence between Reeb fields (vector fields which preserve a transverse nowhere-integrable plane field) up to scaling and rotational Beltrami fields (non-zero fields parallel to their non-zero curl). This immediately yields existence proofs for smooth, steady, fixed-point free solutions to the Euler equations on all 3-manifolds and all subdomains of <sup>3</sup> with torus boundaries. This correspondence yields a hydrodynamical reformulation of the Weinstein conjecture from symplectic topology, whose recent solution by Hofer (in several cases) implies the existence of closed orbits for all rotational Beltrami flows on S <sup>3</sup> . This is the key step for a positive solution to a `hydrodynamical' Seifert conjecture: all steady flows of a perfect incompressible fluid on S <sup>3</sup> possess closed flowlines. In the case of spatially periodic Euler flows on <sup>3</sup> , we give general conditions for closed flowlines derived from the algebraic topology of the vector field.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture
Тип paper
DOI 10.1088/0951-7715/13/2/306
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 441
Последняя страница 458
Выпуск 2

Скрыть метаданые