Автор | Keith Promislow |
Автор | J Nathan Kutz |
Дата выпуска | 2000-05-01 |
dc.description | We consider the large pump-detuning limit of the optical parametric oscillator equations which scale as either a focusing or defocusing parametrically forced nonlinear Schrödinger equation. Linearizing about the pulse or front solutions leads to a non-sectoral, non-self-adjoint linear eigenvalue problem which we analyse via a non-perturbative method, localizing the point spectrum to regions of the complex plane. We establish H <sup>1</sup> linear decay estimates for the semi-group and employ renormalization group methods to demonstrate the nonlinear asymptotic stability of the solutions to small H <sup>1</sup> perturbations of initial conditions. |
Формат | application.pdf |
Издатель | Institute of Physics Publishing |
Название | Bifurcation and asymptotic stability in the large detuning limit of the optical parametric oscillator |
Тип | paper |
DOI | 10.1088/0951-7715/13/3/310 |
Electronic ISSN | 1361-6544 |
Print ISSN | 0951-7715 |
Журнал | Nonlinearity |
Том | 13 |
Первая страница | 675 |
Последняя страница | 698 |
Выпуск | 3 |