Invariant sets for discontinuous parabolic area-preserving torus maps
Peter Ashwin; Xin-Chu Fu; Takashi Nishikawa; Karol Zyczkowski; Peter Ashwin; Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/46, 02-668 Warszawa, Poland; Xin-Chu Fu; Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/46, 02-668 Warszawa, Poland; Takashi Nishikawa; Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/46, 02-668 Warszawa, Poland; Karol Zyczkowski; Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/46, 02-668 Warszawa, Poland
Журнал:
Nonlinearity
Дата:
2000-05-01
Аннотация:
We analyse a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two-parameter family of maps, the set of non-invertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive Lebesgue measure and we give bounds on the measure. For several examples we find expressions for the measure of the invariant set but we leave open the question as to whether there are parameters for which this measure is zero.
218.1Кб