Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gérard Iooss
Дата выпуска 2000-05-01
dc.description We consider travelling wave solutions on a one-dimensional lattice, corresponding to mass particles interacting nonlinearly with their nearest neighbour (the Fermi-Pasta-Ulam model). A constructive method is given, for obtaining all small bounded travelling waves for generic potentials, near the first critical value of the velocity. They all are given by solutions of a finite-dimensional reversible ordinary differential equation . In particular, near (above) the first critical velocity of the waves, we construct the solitary waves (localized waves with the basic state at infinity) whose global existence was proved by Friesecke and Wattis, using a variational approach. In addition, we find other travelling waves such as (a) a superposition of a periodic oscillation with a non-zero uniform stretching or compression between particles, (b) mainly localized waves which tend towards a uniformly stretched or compressed lattice at infinity, (c) heteroclinic solutions connecting a stretched pattern with a compressed one.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Travelling waves in the Fermi-Pasta-Ulam lattice
Тип paper
DOI 10.1088/0951-7715/13/3/319
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 849
Последняя страница 866
Аффилиация Gérard Iooss; Institut Universitaire de France, INLN, UMR CNRS-UNSA 6618, 1361 route des Lucioles, F-06560 Valbonne, France
Выпуск 3

Скрыть метаданые