Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Michael Dellnitz
Автор Gary Froyland
Автор Stefan Sertl
Дата выпуска 2000-07-01
dc.description We discuss the existence of large isolated (non-unit) eigenvalues of the Perron-Frobenius operator for expanding interval maps. Corresponding to these eigenvalues (or `resonances') are distributions which approach the invariant density (or equilibrium distribution) at a rate slower than that prescribed by the minimal expansion rate. We consider the transitional behaviour of the eigenfunctions as the eigenvalues cross this `minimal expansion rate' threshold, and suggest dynamical implications of the existence and form of these eigenfunctions. A systematic means of constructing maps which possess such isolated eigenvalues is presented.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the isolated spectrum of the Perron-Frobenius operator
Тип paper
DOI 10.1088/0951-7715/13/4/310
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 1171
Последняя страница 1188
Аффилиация Michael Dellnitz; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany
Аффилиация Gary Froyland; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany
Аффилиация Stefan Sertl; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany
Выпуск 4

Скрыть метаданые