Автор |
Michael Dellnitz |
Автор |
Gary Froyland |
Автор |
Stefan Sertl |
Дата выпуска |
2000-07-01 |
dc.description |
We discuss the existence of large isolated (non-unit) eigenvalues of the Perron-Frobenius operator for expanding interval maps. Corresponding to these eigenvalues (or `resonances') are distributions which approach the invariant density (or equilibrium distribution) at a rate slower than that prescribed by the minimal expansion rate. We consider the transitional behaviour of the eigenfunctions as the eigenvalues cross this `minimal expansion rate' threshold, and suggest dynamical implications of the existence and form of these eigenfunctions. A systematic means of constructing maps which possess such isolated eigenvalues is presented. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
On the isolated spectrum of the Perron-Frobenius operator |
Тип |
paper |
DOI |
10.1088/0951-7715/13/4/310 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
13 |
Первая страница |
1171 |
Последняя страница |
1188 |
Аффилиация |
Michael Dellnitz; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany |
Аффилиация |
Gary Froyland; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany |
Аффилиация |
Stefan Sertl; Department of Mathematics and Computer Science, University of Paderborn, 33095 Paderborn, Germany |
Выпуск |
4 |