Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mirko Degli Esposti
Автор Gianluigi Del Magno
Автор Marco Lenci
Дата выпуска 2000-07-01
dc.description In a previous paper ( Degli Esposti, Del Magno and Lenci 1998 An infinite step billiard Nonlinearity 11 991-1013) we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given sequence of non-negative numbers {p<sub>n</sub>}<sub>n∈</sub>, such that p<sub>n</sub>↘0, there corresponds a table P: = ⋃<sub>n∈</sub>[n,n + 1]×[0,p<sub>n</sub>]. In this paper, first we generalize the main result of Degli Esposti et al to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the α- and ω-limit of every other trajectory. Then, following the recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of measures is zero.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Escape orbits and ergodicity in infinite step billiards
Тип paper
DOI 10.1088/0951-7715/13/4/316
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 1275
Последняя страница 1292
Выпуск 4

Скрыть метаданые