Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jaroslaw Kwapisz
Дата выпуска 2000-09-01
dc.description In generalizing the classical theory of circle maps, we study the rotation set for maps of the real line x↦f(x) with almost periodic displacement f(x) - x. Such maps are in one-to-one correspondence with maps of compact Abelian topological groups with the displacement taking values in a dense one-parameter subgroup. For homeomorphisms, we show the existence of the analogue of the Poincaré rotation number, which is the common rotation number of all orbits besides possibly those that have rotation zero. (The coexistence of zero and non-zero rotation numbers is the main new phenomenon compared with the classical circle case.) For non-invertible maps, we prove results concerning the realization of points of the rotation interval as the rotation numbers of orbits and ergodic measures. We also address the issue of practical computation of the rotation number.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Poincaré rotation number for maps of the real line with almost periodic displacement
Тип paper
DOI 10.1088/0951-7715/13/5/320
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 1841
Последняя страница 1854
Аффилиация Jaroslaw Kwapisz; Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717-2400, USA
Выпуск 5

Скрыть метаданые