Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор N S Witte
Автор P J Forrester
Дата выпуска 2000-11-01
dc.description The probabilities for gaps in the eigenvalue spectrum of finite N×N random unitary ensembles on the unit circle with a singular weight, and the related Hermitian ensembles on the line with Cauchy weight, are found exactly. The finite cases for exclusion from single and double intervals are given in terms of second-order second-degree ordinary differential equations (ODEs) which are related to certain Painlevé-VI transcendents. The scaled cases in the thermodynamic limit are again second degree and second order, this time related to Painlevé-V transcendents. Using transformations relating the second-degree ODE and transcendent we prove an identity for the scaled bulk limit which leads to a simple expression for the spacing probability density function. We also relate all the variables appearing in the Fredholm determinant formalism to particular Painlevé transcendents, in a simple and transparent way, and exhibit their scaling behaviour.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Gap probabilities in the finite and scaled Cauchy random matrix ensembles
Тип paper
DOI 10.1088/0951-7715/13/6/305
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 1965
Последняя страница 1986
Выпуск 6

Скрыть метаданые