Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор N Buric
Автор I C Percival
Дата выпуска 1991-08-01
dc.description A critical function K( nu ) of a two degrees of freedom Hamiltonian system represents a fractal boundary between regular and chaotic motion as a function of frequency. The method of modular smoothing uses the transformation properties of K( nu ) for unit translation and inversion of nu to provide a rapid method of computing K( nu ). The authors demonstrate two unusual properties of the method: it is simpler for continuous time systems than for maps, and for at least one system exact results can be obtained.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Modular smoothing and finite perturbation theory
Тип paper
DOI 10.1088/0951-7715/4/3/019
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 4
Первая страница 981
Последняя страница 1000
Аффилиация N Buric; Sch. of Math. Sci., Queen Mary & Westfield Coll., London Univ., UK
Аффилиация I C Percival; Sch. of Math. Sci., Queen Mary & Westfield Coll., London Univ., UK
Выпуск 3

Скрыть метаданые