Автор |
N Buric |
Автор |
I C Percival |
Дата выпуска |
1991-08-01 |
dc.description |
A critical function K( nu ) of a two degrees of freedom Hamiltonian system represents a fractal boundary between regular and chaotic motion as a function of frequency. The method of modular smoothing uses the transformation properties of K( nu ) for unit translation and inversion of nu to provide a rapid method of computing K( nu ). The authors demonstrate two unusual properties of the method: it is simpler for continuous time systems than for maps, and for at least one system exact results can be obtained. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Modular smoothing and finite perturbation theory |
Тип |
paper |
DOI |
10.1088/0951-7715/4/3/019 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
4 |
Первая страница |
981 |
Последняя страница |
1000 |
Аффилиация |
N Buric; Sch. of Math. Sci., Queen Mary & Westfield Coll., London Univ., UK |
Аффилиация |
I C Percival; Sch. of Math. Sci., Queen Mary & Westfield Coll., London Univ., UK |
Выпуск |
3 |