Автор |
V Afraimovich |
Автор |
Ya Pesin |
Дата выпуска |
1993-05-01 |
dc.description |
The authors study the stability of motion in the form of travelling waves in lattice models of unbounded multi-dimensional and multi-component media with a nonlinear prime term and small coupling depending on a finite number of space coordinates. Under certain conditions on the nonlinear term we show that the set of travelling waves running with the same sufficiently large velocity forms a finite-dimensional submanifold in infinite-dimensional phase space endowed with a special metric with weights. It is 'almost' stable and contains a finite-dimensional strongly hyperbolic subset invariant under both evolution operator and space translations. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Travelling waves in lattice models of multi-dimensional and multi-component media. I. General hyperbolic properties |
Тип |
paper |
DOI |
10.1088/0951-7715/6/3/006 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
6 |
Первая страница |
429 |
Последняя страница |
455 |
Аффилиация |
V Afraimovich; Dept. of Math., Pennsylvania State Univ., University Park, PA, USA |
Аффилиация |
Ya Pesin; Dept. of Math., Pennsylvania State Univ., University Park, PA, USA |
Выпуск |
3 |