Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор V Afraimovich
Автор Ya Pesin
Дата выпуска 1993-05-01
dc.description The authors study the stability of motion in the form of travelling waves in lattice models of unbounded multi-dimensional and multi-component media with a nonlinear prime term and small coupling depending on a finite number of space coordinates. Under certain conditions on the nonlinear term we show that the set of travelling waves running with the same sufficiently large velocity forms a finite-dimensional submanifold in infinite-dimensional phase space endowed with a special metric with weights. It is 'almost' stable and contains a finite-dimensional strongly hyperbolic subset invariant under both evolution operator and space translations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Travelling waves in lattice models of multi-dimensional and multi-component media. I. General hyperbolic properties
Тип paper
DOI 10.1088/0951-7715/6/3/006
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 6
Первая страница 429
Последняя страница 455
Аффилиация V Afraimovich; Dept. of Math., Pennsylvania State Univ., University Park, PA, USA
Аффилиация Ya Pesin; Dept. of Math., Pennsylvania State Univ., University Park, PA, USA
Выпуск 3

Скрыть метаданые