Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор J Duan
Автор E S Titi
Автор P Holmes
Дата выпуска 1993-11-01
dc.description In this paper, we study regularity and asymptotic dynamics of a generalized complex Ginzburg-Landau (GL) amplitude equation. We show that the solutions belong to a Gevrey class of regularity and are real analytic in the spatial variable. We use this to derive an adaptive method based on Galerkin approximation and show that it converges exponentially fast. We also show that the equation has a finite dimensional compact global attractor, and has at most two determining nodes. This result, which depends on regularity, implies that asymptotic behaviour can be determined from a small number of observations in physical space.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation
Тип paper
DOI 10.1088/0951-7715/6/6/005
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 6
Первая страница 915
Последняя страница 933
Аффилиация J Duan; Center for Appl. Math., Cornell Univ., Ithaca, NY, USA
Аффилиация E S Titi; Center for Appl. Math., Cornell Univ., Ithaca, NY, USA
Аффилиация P Holmes; Center for Appl. Math., Cornell Univ., Ithaca, NY, USA
Выпуск 6

Скрыть метаданые