Автор |
G B Byrnes |
Автор |
R Sahadevan |
Автор |
G R W Quispel |
Дата выпуска |
1995-05-01 |
dc.description |
We show that an autonomous difference equation, of arbitrary order and with one or more independent variables, can be linearized by a point transformation if and only if it admits a symmetry vector field whose coefficient function is the product of two functions, one of the dependent variable u and one of the independent variables x: X(x, u)=A(x)G(u) partial/partial u . The factor depending on the independent variables, A, is required to satisfy some non-degeneracy conditions. This result is derived using a discrete jet space formalism for partial and ordinary difference equations, analogous to that used for the study of differential equations. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Factorizable Lie symmetries and the linearization of difference equations |
Тип |
paper |
DOI |
10.1088/0951-7715/8/3/009 |
Electronic ISSN |
1361-6544 |
Print ISSN |
0951-7715 |
Журнал |
Nonlinearity |
Том |
8 |
Первая страница |
443 |
Последняя страница |
459 |
Аффилиация |
G B Byrnes; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia |
Аффилиация |
R Sahadevan; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia |
Аффилиация |
G R W Quispel; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia |
Выпуск |
3 |