Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор G B Byrnes
Автор R Sahadevan
Автор G R W Quispel
Дата выпуска 1995-05-01
dc.description We show that an autonomous difference equation, of arbitrary order and with one or more independent variables, can be linearized by a point transformation if and only if it admits a symmetry vector field whose coefficient function is the product of two functions, one of the dependent variable u and one of the independent variables x: X(x, u)=A(x)G(u) partial/partial u . The factor depending on the independent variables, A, is required to satisfy some non-degeneracy conditions. This result is derived using a discrete jet space formalism for partial and ordinary difference equations, analogous to that used for the study of differential equations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Factorizable Lie symmetries and the linearization of difference equations
Тип paper
DOI 10.1088/0951-7715/8/3/009
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 8
Первая страница 443
Последняя страница 459
Аффилиация G B Byrnes; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia
Аффилиация R Sahadevan; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia
Аффилиация G R W Quispel; Dept. of Math., La Trobe Univ., Bundoora, Vic., Australia
Выпуск 3

Скрыть метаданые