| Автор | Louis-Sébatien Guimond |
| Автор | Christiane Rousseau |
| Дата выпуска | 1996-05-01 |
| dc.description | In this paper we study a stratum of integrable cubic vector fields with a saddle singularity having symmetry, i.e. symmetric with respect to two axes. Our perspective is from the point of view of invariant algebraic curves of the systems. We study the global geometry of such systems. We give the bifurcation diagram of the phase portraits of the vector fields. All bifurcations correspond to bifurcations of invariant algebraic curves. We next try to link this bifurcation diagram with the one given by Rousseau and Schlomiuk for integrable cubic vector fields with a centre singularity having symmetry. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | A stratum of cubic vector fields with an integrable saddle and symmetry |
| Тип | paper |
| DOI | 10.1088/0951-7715/9/3/008 |
| Electronic ISSN | 1361-6544 |
| Print ISSN | 0951-7715 |
| Журнал | Nonlinearity |
| Том | 9 |
| Первая страница | 761 |
| Последняя страница | 785 |
| Аффилиация | Louis-Sébatien Guimond; Département de Mathématiques et de Statistique, Université de Montréal, c.p. 6128, succ. centre-ville, Montréal, Qué, Canada H3C-3J7 |
| Аффилиация | Christiane Rousseau; Département de Mathématiques et de Statistique, Université de Montréal, c.p. 6128, succ. centre-ville, Montréal, Qué, Canada H3C-3J7 |
| Выпуск | 3 |